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ABSTRACT
We study a natural class of appropriate viscosity matrices for

strictly hyperbolic systems of conservation laws in one space dimension,
u, + f(u), =0, ue R'. These matrices are admissible in the sense that
small amplitude shock wave solutions of the hyperbolic system are ghown to be
limits of smooth traveling wave solutions of the parabolic system
u + f(u) = \a(Dux)x as v+ 0 if D is in this class. The class is
determined by a linearized stability requirement: The Cauchy problem for the
equation u, + t'(uo)ux = vDuxx should be well posed in Lz uniformly in

V as Vv + 0. Previous examples of inadmissible viscosity matrices are

accounted for through violation of the stability criterion.
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SIGNIFICANCE AND EXPLANATION
Many equations of mathematical physics take the form of nonlinear
hyperbolic systems of congservation laws. With small dissipative effects
neglected, typically smooth solutions must develop discontinuities (shocks in
finite time. Reincorporating dissipation helps select those discontinuities
which are physically meaningful. For this purpose, many different sorts of
digssipation will do; in particular, the physical viscasity is typically

PR R
degenerate and not convenient. In this paper we provide a thorough

R T S g S

understanding of what sorts of second order viscosity terms smooth the
2 .
physical discontinuities. A natural class of\‘ndnissibleg*viscosity terms is

determined based on a simple linearized stability condition.
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STABLE VISCOSITY MATRICES FOR SYSTENMS OF COMSERVATION LAWS

Andrew Majaa"’ 12 and Robert Pego'’?

§1.  INTROOUCTION

The simplest discontinuous solutions of the m x m system of hyperbolic conservation

laws
(1.1 u + flu), =0, uwen

are the shock wave solutions defined by

\&‘ x €< st
“R x > st

{1.2) u(x,t) =

where u, and Uy Aare constant vectors which together with the constant s satisfy the
Rankine~-Hugoniot conditions

(1.3) -s{ug =~ ug) + flug) =~ flu) =0
and a suitable strict entropy condition: Lax's shock inequalities in the genuinely
nonlinear case (ses (1.15) below), and Liu’s strict condition (B) in the general case (see
section 3).

¥We assume that the system (1.1) is strictly hyperbolic. Thus, if A(u) = 3£/ is

the = x m Jacobian matrix, A(u) has = distinct real eigenvalues, ordered

11(0) < Xz(\l) € vee € X.(u) with corresponding right and left eigenvectors rj(u) and

(a) for 3,k = 1,...,m, satistying
t
Mn)rj - Ajrj A'(u)l.k - xk‘k
Yeery = by

An eigenvalue ) 3(") is called genuinely nonlinear if VA, r j(u) never vanishes.

(1.4)
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In 1959 Gelfand introduced the following problem: Show that a discontinuous solution

of the form (1.2) (so satisfying (1.3)) is the limit of special smooth solutions

“v - U(x ; 't) of a reasonable parabolic systea

v v v, v
(1.5) u, ¢ £{u )‘ = vw(D(u )“x)x as v + 0

if (and only if) the entropy condition is satisfied. 1In particular, one should determine

the class of viscosity matrices D(u) for which the above is true: such a matrix is

called admissible. The smooth traveling wave solution U(x ; 't) is called a viscous

shock profile.

X = st
v

The existence of the traveling wave U( ) having the desired limit (1.2)

requires that, with & = x—;'ﬁ, U(E) should satisfy the m x m gystem of nonlinear
ODE's

(1.6) o(vyu, = ~s(U ~ uL) + £(0) = f(u)

£
for -= < E <® together with the boundary conditions

(1.7) lim W(E) = w lim U(§) = u

Erm Ertm R

That i., the autonomous system of ODE's (1.6) should admit a trajectory connecting the
critical point u, on the left to the critical point up on the right.

Several authors have established sufficient conditions ensuring the existence of the
connecting orbit for (1.6), (1.7) under various assumptions, typically including either
m=2 or '“L - uRl small (weak shocks), and either genuine nonlinearity or D{(u) = I
(see (4], (1), [2),03], [11]). A notable exception is Mock's more recent paper {12], which
tinds a broad class of matrices D(u) admigsible for general = and strong shocks, making
global assumptions of genuine nonlinearity and the existence of a convex entropy
function. On the other hand, Conley and Smoller (1] have discovered puzzling examples of
constant positive definite matrices D which are inadmissible, so that for some family of
shock waves the system of ODE's (1.6) fails to admit a trajectory satisfying (1.7).
Moreover, these examples exist in a simple context, that arising when (1.1) represents the

equations of isentropic gas dynamics

poers




T, =v. =0
t x

(1.8)

v, +plr) =0

t
where one assumes that p’(t) < 0, p®(t) > 0. The system (1.8) is alao called the
p-system.

The natural requirement of parabolicity imposed by Gelfand on (1.5) means that the
eigenvalues of D(u,) always have positive real parts. Equivalently, if :j(ﬁ).
j=1..,m, are the eigenvalues of the matrix symbol
(1.9) P(E) ~ -1EA(uy) - E2vD(uy)
obtained from linearizing (1.5) at a constant state by, then for some § > 0 depending
on u, these eigenvalues satisty
(1.10) Re x(6) < ~81&1® for 161 large, 3 = 1,....m .

Our central objective in this paper is to introduce a very natural algebraic
requirement on the linearized system from (1.5) beyond the condition (1.10) -~ a condition
on the viscosity matrix D(u;) we call strict stability. Given the concept of strict
stability, the bulk of this paper (sections 2-4) is devoted to two goals: 1) To explain .
the examples of inadmissibility in {1], and link the mechanisms of inadmissibility with
quantitative violation of the strict stability conditions; 2) To elucidate the close
relationship between strict stability and necessary and sufficient conditions for
admissibility.

The requirement of strict stability is motivated by the following considerations. The
main interest in the problem of finding viscous shock profiles as described in (1.5)-(1.7)
is to investigate in a special case the limit as v + 0 of golutione of (1.5). The
constant states, u,, are special solutions of these diffusion equations. Linearization

of (1.5) around the constant state Vg yields the linear equation,

v
v

v v
¢ + ”“o"’x = vn(uo)v“, v3o

(1.11)
v“(x.o) = vo(x)

80 that a natural minimum requirement for any viscosity matrix in (1.5) is that the

-3-




solution v“ of (1.11) converges to v° for any initial data ver This is true for all
vo(x) e L?(R) if and only if for any T > 0, there is a fixed constant C(T) so that
with sv(t)v° - vv,

(1.12) - max 18V(t)v !

o<t
o<ttt

<€ C(T)iv, )
LZ 0 L2

That ia, the initial value problem (1.11) is required to be uniformly well posed in 1? as

vV + 0. At any given value u;, there is a set of =m x m matrices D(uy), the uniformly
stable matrices, S(uo), quaranteeing (1.12). However, this set of matrices, S(uy), is
a bit too large since the boundary of S(uy), as(uo), includes D Z 0 as well as m xm
matrices for which the solutions of (1.11) have a purely dispersive character (see section
4). The set of strictly stable vigcosity matrices at the point u, is the interior of the
set S(uo). The strictly stable viscosity matrices at u,; admit the following algebraic
characterization (see section 2 and [13] for further results):

A viscosity matrix is strictly stable if

and only if there exists a § > 0 so that
(1.13) the eigenvalues :,(E), 1<§<m for

the symbol P(E) = -A(ug)if - £7D(u,) satisfy

Ra x () < -61612 for all cen.

Looking back at (1.10), we see that the condition of strict stability strengthens the
requirement of parabolicity to an algebraic stability condition valid for all £ € R1 and
not just for sufficiently high wave numbers. Thus, one objective here is to study the
existence of viscous shock profiles for diffusion matrices satisfying (1.13) for every
value of u, -- we call these the strictly stable viscosity matrices in the remainder of
this paper. Our second objective is to explain the inadmissibility examples from [1] and
to identify the concrete mechanismg of inadmissibility through violation of the strict
stability conditions in (1.13).

In section 2, first we study some of the algebraic implications of strict stability
regarding the linearized structure of the ODE's in (1.6) at the critical points, U, up

for a general m x m system. PFor a k-shock solution of (1.1) satisfying Lax's entropy

inequalities,

-g=




(. )

(1.14) Xk(uL) >8> Xk(ua), Xk”(uk) >8> xk_, L

we verify there that for the ODE in (1.6),

(1.15) the dimension of the unstable manifold at u; is m -k + 1
the dimension of the stable manifold at ug is k

The following is an immediate consequence of this simple fact:
Corollary 1. All the explicit inadmissible viscosity matrices for the system in (1.10)

congtructed in (1] (via Theorems 3.2 or 5.2 in (1]) are not uniforamly atable at either

IILOZ \I.R-

Thus, the natural requirement of strict stability discussed in (1.11)=(1.13) is violated in
these explicit examples of inadmissibility. 1In section 2 we also develop apparently weaker
algebraic conditions which are equivalent to the strict stability condition in (1.13) tor

2 x 2 gystems -- these results are central in our digcussion of the isentropic gas
dynamics eguations in section 4.

In section 3 we study weak shock profiles for general m x m systems. We prove a
theorem which essentially characterizes matrices admissible for weak k-shocks. An
immediate consequence is
Corrollary 2. Assume that D(u;) is strictly atable at uy; for the m xm system
(1.1). Then there is a fixed neighborhood of u, such that for any weak solution (1.2) of
{1.1) (satisfying (1.3)) with u, and up in that neighborhood, uy and u, can be
connected in (1.6) by a viscous shock profile satisfying (1.7) if and only if the weak

solution (1.2) satisfies Liu's strict entropy condition (see section 3).

Our proof of this theorem, based on the center manifold theorem, is quite simple and was
wmotivated by the work of Kopell and Howard (8], which might be applied in the genuinely
nonlinear case. However, some new observations are needed to handle the general (non-
genuinely nonlinear) case. So strictly stable viscosity matrices D(u) are always

admissible for sufficiently weak shocks. On the other hand, for 2 x 2 systems we have




Corollary 3. Suppose = = 2. If the 2 x 2 viscosity matrix D(u) is not stable at

Uge necessarily it is inadmigsible for all weak k-shocks with either kX = 1 or k = 2,

In section 4 we present new examples of inadmissible viscosity matrices in the large

where no connection of u, and u, is possible, satisfying (1.7) or the reverse. 1In

these examples, violation of strict stability ias linked directly to Hopf bifurcation in a
way which elucidates the mechanism behind the nonconstructive Theorem 5.3 in [1].
All the above results might lead us to guess:

Strictly stable viscosity matrices, for reasonable 2 x 2
genuinely nonlinear systems are always admigsible for any
shock solutions of (1.1) satisfying Lax's shock inequalities.

In section 4 we identify broad classes of strictly stable D(u) which are admissible for
all shocks of the p-system (1.8). We mention here some special regults:
Corollary 4. Consider the p-system (1.8), and aggsume p'(71) + 0 as 1 +>®, p'(7) + -=
as T *+ 0.

1) Any constant strictly stable viscosity matrix D for (1.8) is globally
admissible.

2) Given any viscosity matrix Dy strictly stable at a fixed point u_ € Rz, there

[
is a smooth strictly stable D(u) such that D(uo) = Dy and D{u) is globally

admissible.

Our proofs make use of Lyapunov functions obtained from convex entropies in a way suggeasted
by Mock's work [12).

Despite these positive results, the conjecture above fails. We can construct a
(rapidly varying) strictly stable D(u) for the system (1.8) which is inadmissible for any
given shock. However, the mschanism of inadmissibility is subtle and very different from

those discussed earlier.

————— e}




Also in section 4 we present an example with D(u) @ 38(u) for all u (stable but
not strictly stabls) for the p-system (1.8) for which (1.5) is a dispersive systea and
(1.6) is a consexvative system admitting a first integral, and no shock profiles.

Pinally, we remark that the choice of the Lz-non for determining a class of linearly
stable viscosity matrices is not the only natural choice. Other natural norms for shock

vave theory such as the L) or sv norms might single ocut a smaller class of gtable

viscosity matrices which perhaps admit shock profiles with more special structure.




§2. THE ALGEBRAIC STRUCTURE IMPLIED BY STABLE VISCOSITY MATRICES
If we apply PFourier transforms and Plancherel's theorem to (1.13), we conclude that a
viscosity matrix is uniformly stable if and only if the uniform bound
(2.1) max lexp £ P(E)| < c(T)
0<t<T
o<y
is satisfied £ @ R where P({) = -Ezb(uo) - 1€A(uo). In appendix A, we prove the
tfollowing algebraic characterization of the strictly stable viscosity matrices, using the
Kreiss matrix theorea:
Theorem 2.1.
The following are equivalent for a viscogity matrix D(u) for the m xm system in (1.5)
1) D(u) is strictly stable at u,
2) The eigenvalues, «x_ (), J = 1,...,m of P({) satisfy

b
Re Kk (E) < -6°|€|2 for some fixed 60 >0 and all £ eR.

3
3) The following three conditions are satisfied:
(1) The system in (1.5) is parabolic, {.e. the eigenvalues of
D(ug) have positive real part

(i1) lkDrk(uo) >0, k= 1,000,m

(i11) The symbol P(£{) has no purely imaginary eigenvalues for £ # 0
Remark. We note here that a simple sufficient condition guaranteeing strict stability is
the following: There is a positive definite symmetric matrix, E(ug), so that BA(uo) is

symmetric and ED(u,) i8 positive definite (perhaps not symmetric).
ug

For the proof of this fact, we compute that
Re(k)e*Be + E°Re e%EDe = 0
where (P(§) - x)e = 0, 8o that criterion (2) of Theorem 2.1 is satisfied.
Next we use Theorem 2.1 to determine the linearized structure of (1.6) at the critical
points uw, up. If u, is any critical point of (1.6), the stable (unstable) manifold

M_(M,) of {1.6) at uy is tangent to the invariant subspace of the linearization of (1.6)

at  u,,

~8-




(2.2) 0" HAlug) - 1) = Q(ug,s)
corresponding to eigenvalues with negative (positive) real parts, and

(2.3) dim n_(uo) = pumber of eigenvalues of Q(uo,s)
with negative real parts

dim M,{uy) = number of eigenvalues of Q(ug,8)
with positive real parts

We have the following general fact:
Theorem 2.2.
Suppose D(uo) is a strictly stable m x m viscosity matrix for (1.1). Por any k-shock
satisfying Lax's entropy inequalities,
Ak(uL) >8> Ak(uR)
xk*‘(uk) >8> xk-i(“L)
it follows that
(2.4) dim M_(up) =k
dim M (u) =m - k + 1
Before proving Theorem 2.2, we remark that Corollary 1 of the introduction follows
immediately in the following fashion: For shocks moving with positive wave speed for the
p-system (1.8), k = 2, so that applying Theorem 2.2 we have
dim H_(uR) = 2, dim H*(uL) = 1
for strictly stable viscosity matrices. On the other hand, all of the inadmissibility
criteria in Theorem 3.2 and Theorem 5.2 of [1] imply that necessarily
dim H_(uR) =1, dim H+(uL) =2,
Thus the inadmissible viscosity matrices constructed through these criteria cannot be
strictly stable. Similar remarke apply for shocks in the p-system with 8§ < 0, and for
applications of the results in [1) for general 2 x 2 aystems.
Proof of 2.2.
We consider the m + 1 open intervals, I, ~ (-“.11(u°)),

I, = (A (u )rk

3 3% j+1(u0))' 3= 1, i0e,m=1, Iln - (Xm(uo),u) .

~9-
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We set ;

s* = number of eigenvalues of Q(uo,l) with

positive real parts

s = number of eigenvalues of Q(uo,s) with

negative real parts

and begin the proof of Theorem 2.2 with the claia,

(2.5) c*, s~ are constant as s varies over each Ij

M N

and s
provided that D(u,) 1is strictly stable. Pirst, from (1.14), zero is never an eigenvalue
on any xj; furthermore,

(2.6) Q{ug,s) never has any non-zero purely
imaginary eigenvalues, it # 0, for any s

because

det(Q = itT) = 0 <==> Jdet(P(T) - x) =0
with « = -iat go that « is on the imaginary axis; this contradicts iii) of 3) in
Th.oro-/2.1. Since the eigenvalues of Q are continuous functions of 8 and cannot cross
the imaginary axis on I’, we deduce the claim in (2.5). The proof of Theorem 2.2 is
finished once we establish that

+
(2.7) 8 (\!o)lxj =mn - i, j=0,1,¢c0,m

for any u, (apply the information from Lax's shock inequalities and (2.6) with
ug = uy, un). AsS 8 * =, Q(uo,s) + -sD-‘ and 3} 1) of Theorem 2.1 together with (2.5)
guarantees

+
(2.8) ] (uo)lI = 0

From (2.6), we see that an eigenvalue of Q(u,,s) can cross the imaginary axis only
through zero ind at the special points, s = Ak(uo), k= 1..0,m¢ We claim that

ror |s - Akl < € Q(ug,8) has a simple

(2.9) eigenvalue Tk(l), with tk(lk) = §, and
at .
)3 -1
s s-hk = -(lk,Drk) k= 1,00s,m

-10-




Prom (2.8), (2.9), and 3) ii) of Theorem 2.1 we deduce (2.7) by induction on j. It
remains for us to establish (2.9). Now, -Xkl + A has simple eigenvalues; therefore,
- + (-5 + A) has a unigue smoothly varying simple eigenvalue, 6(t,s), with
Dlo.kk) =0 for |t] + |s - xkl < €. We let r(t,s) denote the corresponding right
eigenvector with ;(O,Ak) = xx(uo) satisfying
(- + (=8I + A))x = 6(T,8)F
By differentiating this formula with respect to 1,8, evaluating at s = Ak’ T=0, and

taking the inner product with lk(uo) we obtain

(2.10) %g‘ - -1, %g‘ = ~(4,.0r,) # 0
(0,4) (0,A)

wvhere we have applied 3) ii) of Theorem 2.1 to » From the implicit function theorea and

mlv
-l

(2.10), we deduce (2.9) directly.

The Special Structure of Stable 2 x 2 Systems

Pirst, we prove that the sufficient condition mentioned below Theorem 2.1 is also
necessary when = = 2, In fact, we have
Proposition 2.1. The following are necessary and sufficient conditions that D(u) be
strictly stable at u, when u = 2,

1y p!

is strictly stable at ug.
2) There exists a smoothly varying positive definite symmetric matrix, E(u),
defined near u; with EA(u) symmetric and ED(u) positive definite.
3) (1) (lk,Drk)(uo) >0 for k=1 and 2, and
(11) det D(ugy) > 0.
Given the matrix A(u) with distinct eigenvalues, we let R(u) denote a fixed
smoothly varying right eigenvector matrix with L(u) the corresponding left eigenvector
matrix (LR = I,LAR diagonal). The sufficient condition for strict stability in the i
remark below Theorem 2.1 is clearly satisfied provided

(2.11) LDR 1is positive definite .

But R(u) is not uniquely determined by A{u). Proposition 2.1 follows easily from the

T




following result, which says that (2.11) is necessary for strict stability in 2 x 2

stems
sy t ~

Proposition 2.2, Assume m = 2. Let D(u) be a smooth 2 x 2 matrix. Then D(u) is

strictly stable at each point if and only if there exists a smooth positive diagonal

watrix S(u), such that if R= RS, L= i", then LOR(u) is positive definite for

all u.

We leave it as an exercise for the reader to check Proposition 2.2 implies Proposition
2.1. The only if part of Proposition 2.2 is the key fact and this follows from the lemma
below.
Lemma. Suppose A = (: 2] satisfies a,4 > 0, ad - bc > 0. Por -t <a< 1, let
sa = dug(h_-_t-x, /-1-0_0)- Then there exist a_  and a. -1 < a < a, < 1, depending
smoothly on A, such that for any a with a <ac<a, the scaled matrix s;1ns° is

positive definite.

Proot. (3 ®) 1s posttive definite if and only if 6> 0 and (B + v)? - 4ab < 0. Now

-1 ( a hkl' A= (: + 0)1/2

a Asu - c/A 4 e « For =1 < a< 1, this is positive definite exactly

when
Q(a) = (b(1 + a) + c(1 - a)}? - 4ad(1 - a®) < 0O

To prove the lemma, we shall show that Q < 0 between distinct roots a_ and a, of

Q(a) with -1 < a < a < 1. We compute

Q(=1) = 4c2 > 0 Q1) = 462 > 0

Q(0) = (b + t:)2 - 4ad Q'(0) = 2(b + c)(b -~ ¢)

% Q" =4ad + (b-c)? = 4fad-bc) + b+ )2 >0

The minimum of Q(a) 4is thus attained at 9 - -Q'(0)/Q". Either |b ~c¢c| < |b + ¢|] or

vice versa, so laol < 1. The discriminant of @ is

19'0)? - 29%000) = b+ )b - )2+ (4aa- b+ P(ama s (b - a)?)

= 4ad(4ad ~ 4bc) > 0 .

-12=




So Q(a) has distinct real roots in the interval ([-1,1], which are then smooth functions

of the coefficients.

The technical result below, which characterizes the variation possible when a vector
field is multiplied by an arbitrary smooth 2 x 2 strictly stable matrix, will be useful
in our investigation of inadmissibility for strong shocks in section 4. As usual, assume
that R(u) = (r,y,r;) is a smooth matrix of right eigenvectors of A(u).

Proposition 2.3. Suppose nonzero vectors w and v in R2 satisfy the
condition
{Q) There exists a positive diagonal matrix S so that ;TSU > 0.
(Roughly, condition (Q) means that w and ¥ are not of opposite sign.) Let
v = wiry + wory = Rlu)w, v = R(u)W. Then there exists a strictly stable matrix
B(u.v,;), depending smoothly on u,w and ;, such that Dv = v. Conversely if D 1is
strictly stable and w any nonzero vector in Rz, then w and LDRw satisfy condition
Q).
The proof is postponed until Appendix B.

Remark. Condition (Q) covers two cases:

Q1) If w 1lies on a coordinate axis (either Wy Or w, are rero so V = r;), then
w must lie in an adjacent quadrant (so ;&w > 0).

02) If w 1lies strictly in some quadrant Q of rR? (wy,w5 nonzero) then v must
not lie in the closed quadrant opposite (; ¢ -6).
Remark. 1If w.; satisfy condition (Q), so do w,t; + (1 - t)w, for any t,

0<t<1, and so do w, Sw for any positive diagonal S.

13-




§3. ADMISSIBILITY IN GENRRAL FOR WEAK k-SHOCKS

We begin this section by defining Liu's strict condition (E). We consider the
structure of the Hugoniot set of pairs of vectors (“L'“R) satisfying
(3.1 fluy) ~ flug) ~ s(uy - up) =0
for some wave speed s. PFixing Uy, the local structure of the set of states up
satisfying (3.1) is well-known (see [3] and [10]). In some neighborhood of u this set
congists of = curves, ;klo). k= 1..,m passing through u, with corresponding shock

speeds tk(p) for X = 1,...,ma satisfying

(3.2) W) = u 8%(0) = A, (u)
~k k
du das 1
S (0 = x (up) o (0) = 3 (M er ) uy)

~k
p = lk(uL)'(u {(p) ~ uL)

Liu's strict entropy condition for the k-shock wave in (1.2) with u - Gk(pR) is

a(R) sk(p) > = ak(oR) for p between zero and o
It Xk(u) is genuinely nonlinear and |uy - “Rl is small, this condition is eguivalent to
Lax's shock inequalities.

Corollary 2 of the introduction is an immediate consequence of Theorem 2.1.3) and the
main result of this section to be described below. Before stating this result, we remark
that in the special case where u and f(u) are scalars, Liu's (strict) entropy condition
reduces to Oleinik's familiar (strict) condition E; furthermore, we invite the reader to
check by explicit quadrature that for the scalar parabolic equation

u, + f(u)x = v
U ,up can be connected by a viscous shock profile if and only if Oleinik's (strict)
condition B is satisfied -~ this fact indicates that the weak shock theorem stated below

is sharp in general.

Our main result here is the following:

-14-




Theores 3.3. Pix u, € ® and k, 1 <k <m. Assume Xk(u) is not linearly degenerate

in any neighborhood of uy. Assume that D( uo) satisfies the nondegeneracy conditions:
{1) ©dluy) is nonsingular
(1) lkD:k(uo) 0
(141) [-EZD + 1&(a - &))(no) is nonsingular for all real £ # 0.
Then the following are equivalent:

1) L 0r (u) >0 [0, (u,) < 0]

2) 0 {is locally {in]admissible for k~shocks in a neighborhood of u4z. That is,
there exists § > 0 s0 that for any uy and up in Bglu) = {u | [u - uyl ¢ 8}
satisfing the Rankine-Hugoniot relations for some speed s = lk(pg), then a ghock profile
lying in '6(“0) exists connecting u; to up [lug to u ] 4if and only if Liu's strict
entropy condition e(E) is satisfied. 1In any case, at moat one trajectory u(f) of (1.6)
connecting up and u, exists which remains in 56(\:0) for all £ real.

Remark: Bafore discussing the proof of Theorem 3.1, we indicate the fashion in which
Corollary 3 of the introduction is an immediate consequence of Proposition 2.1 and this

theorem. Prom 3) of Proposition 2.1, if a parabolic viscosity matrix D(u) 1is not

uniformly stable at u,;, then necessarily,

s

either l'or'(uo) <0
or lzotz(un) <0
(or both occur). WwWith the above inequalities, we apply the inadmissibility criterion from

Theorem 3.1 to either the one waves or two waves to deduce Corollary 3.

4 Attty rCTBNSWIERISS apeaty t -L

Theorem 3.1 is proved in two steps. PFirst, for all w near u; and s near

-

kk(uo) we red the ¢ tion problem for the system (1.6) to that for a scalar ODE

locally, by employing the center manifold theorem with the nondegeneracy conditions

{-i11). That is, a curve is constructed, locally invariant for (1.6), which contains all
the critical points of (1.6}, for any u,, in a fixed neighborhood of uge In the second

step, this one-dimensional flow 1s analyzed: Critical points on the invariant curve are

AR L T

points I (p) on the Hugoniot curve for having lk(p) = g. The stability of the rest
“ vy,

point uy in the flow is determined by the sign of L“Dtk(\lx')(kk(un) - 8). Por a shock
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satisfying s(E), sk(O) - Xk(uL) > s. Degenerate cases are treated by continuity, using
the center manifold.

Step 1. Extend the system (1.6) by introducing the paramaters v = vy, and s as
additional variables; then (1.6) may be written

u, = D (u)flu) - £(v) ~ sfu ~ ¥))

€
(3.3) Ve = 0
.5 =0
Our analysis will be based on the construction of a center manifold for (3.3) at the
critical point (u,v,8) = (no,uo,kk(uo)). The center manifold theorem (Kelley, (6],
Theorem 3) says:
Theorem. Suppose that a system of ordinary differential equatione may be written as
x' = Ax + ‘i(x,y,:)
y' = By + “;(x,y,z)
z' =Cz + E(x,y,:)
wvhere A,B, and C are constant square matrices whose eigenvalues have positive, zero,
and negative real parts, respectively, and ?t,?, and Z are C'(r > 2) and vanish along
with their first derivatives at (x,y,z) = 0.
Then there exists a locally invariant manifold for this system,
¥ = {(x,y,2)] |yl < § x = u*(y), z = w(y)}
where u* and w* are CI functions defined for lyl < § for some & sufficiently
small, and vanishing with their first derivatives at y = 0.

The center manifold need not be unigue, but the following uniqueness property for
trajectories does hold: The center manifold (parametrized by y) may be taken to be the
intersection of a center-stable manifold (parametrized by y and z) and a center-
unstable manifold (parametrized by y and x). Then any trajectory which lies in a small
neighborhood ‘3(0) for all time must lie on this center manifold. This property follows
from this fact, stated in Kelley (7): 1If a trajectory starts in a small neighborhood

86(0) &t a point not on the center-stable manifold, then it must leave 56(0) at some

positive time.
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Let us now apply the center manifold theorem. Without loss of generality, we may

assume uy =~ 0, xk(uo) = 0. Por convenience, we introduce w = u - v and the vector
W= (v,v,8)% in ¥*"'. we write (3.3) in the form
(3.4) '5 = T(W)

To apply the center manifold theorem, it suffices to describe two invariant subspaces

for the linearization 4T at the critical point 0: algebraic eigenspaces corresponding
to groups of eigenvalueas with zero and nonzero real parts, respectively. In block form on

2 x & x R, we calculate ‘

The characteristic equation for dT(0) may be written

a1
A7 det{A - XD)u_o =9

We claim that the nondegeneracy conditions imply that the algebraic eigenspace for

eigenvalues with zero real part is simply the kernel of dJaT(0). Indeed, condition iii)

means that dT(0) has no nonzero imaginary eigenvalues.

Claim: The algebraic eigenspace for d4T(0) for the eigenvalue 0 is equal to

ker 4AT(0) If and only if !.kbrk(o) # 0.

Proot. This elgenspace is larger than ker 4T(0) if and only if range aT(0) N ker 4AT(0)
1

is nontrivial. This occurs when there exists v in R* such that D 'Asv = Y. or

D'k = A*v, whence "kDrk =0, If l.km:)t # 0, no such v exists.
Thus, let Y = ker aT(0), X = range 4T(0). X and Y are complementary invariant
subspaces for QaT(0) comprising the algebraic eigenspaces for eigenvalues with nonzero and
zero real parts, respectively. Purther explicit decomposition of l""” is unnecessary.
Applying the center manifold theorem, we have:
Proposition 3.2. Assume that D satisfies the nondegeneracy conditions at uy = 0 with
Xk(uo) = 0. Then there exists 6 > 0 and a C° function g : Y + X defined on

‘6(0) N Y so that
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1) * = {x+ye lz.”lx = gly)} is a locally invariant manifold for equation (3.4).

2) g(0) = 0 and dg(0) = 0. Thus M* is tangent to Y at 0.

3) Any trajectory of (3.4) which lies in 36(0) for all £ 1lies in M*. 1In
particular, critical points in 36(0) lie in M*.

We now describe how this center manifold reduces the connection problem for the system
{1.6) to one dimension. Observe that Y = ker 4dT(0) is spanned by the m + 2 vectors
(ry,0,0), (0,0,1), and (o,rj,O), = 1,e00,m
Proposition 3.3. Assume that D(u,) satisfies the nondegeneracy conditions i-iii). Then
there exists &> 0 so that if fuy -yl + Is - H:(“o)l < 8§, there is a locally
l» invariant curve u(n.ux.l) for the system (1.6) containing u; and any point up in
36(\:0) satisfying the Rankine-Hugoniot relations f(up) - f(u;) - s(up - u) = 0.

Proof. Define a line in Y parametriged by y(n) = (mk.ux‘,s). The curve
W(n) = y(n) + g{y(n)) 1lies in M* while |y(n)] < 8. Since g maps into range

4aT(0), we may write g{y(n)) = (;(n,%,s),0,0). Under equation (3.4), the v and s

components of W = (w,v,s) remain invariant. Hence the curve W(n) is the intersection
of two locally invariant manifolds, so is locally invariant. Returning to the (u,v,8)
coordinates of (3.3), we obtain an invariant curve for (1.6) parametrized by

u(n,u ,8) = u + m, (ug) + E(n.uh.-)

80 long as

lytml = Ing 1+ ta - ugl + 18 - A (ug)) < 8.
If uy is in 36(“0) and  f(up) - f(u) - s(up - u) = 0, then the point (ug = ug,up,s)
is a critical point of T(W), so lies in M*, and therefore u, - u = ey + ;("R’“L")
for some t\n.

The flow on the invariant curve u( "’“L") is now determined by a scalar ODE for

n(g),
(3.5) " = F(n,u ,s)
where F is CF, determined by the equation
(3.6) D(u)unr(n,uL,-) = f(u) - f(un) - s(u - u“)

where u = u(n,u_,s). From the uniquenass property (3) of Proposition 3.2, two critical

L
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points uy.,up in '6(“0) are connected, left to right, by a trajectory in ss(uo) if and
only if “L =0 and ng, are connected, left to right, by & trajectory of (3.5).

Step 2. We proceed to analyze the flow (3.5). Two critical points n - 0 and n, are
connected, left to right, by a trajectory of (3.5) if and only if sgn F( n.%.s) = sgn n,

for n between 0 and I\R. From (3.6) we obtain

t(n.ub.l)lk(ux‘)b(u)u“ = !k(ut‘)lf(u) - t(uL) - s(u - uL)]
'n(o"ﬁ."”'k("t.m(“n)“n = “\(“L) - '”’k(“x.,“n(o'“l.")

(3.7)

We assume § is so small that for each u, in 56‘“0) the Hugoniot curves
\;k(o,%) in 36(“0’ are as described at the beginning of this section. The invariant
curve B(T\.\!L,l) intersects the Hugoniot curve Gk(p.%) just when n is a critical
point of (3.5). We define a correspondunce between n and p (given u, and s8) by
p(n) = Ly, J(u(nu, ,8) ~u ), 80 p = "k(“t.’“n
Lemoa 3.4. If § is sufficiently small, then if I“L - uol + |s - )\(“0” < §, we have
1) sgn "k(“x..’p(“)“n' sgn lkbrk(uo) and sgn lk(un)u"- 1 in Bé(uo). so p
increases with n.
2) ?(n,uL,l) = 0 if and only {f sk(p(n)) =g or n=20,
3) PFor all n Dbetween 0 and LY
(3.8) sgn r(n,uL,l) sgn l.kbrk(uo) = ggn ﬂ(lk(D(ﬂ)) - 8)
provided lk(P(l'\)) - 8 1is of one sign between 0 and Nye
Using (3.8) we may complete the proof of Theorem (3.1). Assume u; and
uw - \?(OR,%) satiafy the Rankine~Hugoniot relations with s = sk(pR), and assume Liu's
strict entropy condition s(E) holds. Then u " u(%,ub,s) for some r\R, and
P ™ lk(“L)(“R - “L’ = p(nn). By (3.8) and condition s(E),
agn ?('\,\l",l) agn l.kbzk(uo) = sgn n.
for all n between 0 and U So a trajectory of the flow (3.5) connects n = 0 and
g left to right, if and only if l.kbtk(uo) > 0,
If f£,0r (u)) >0 and u, is as above, but the entropy condition is not satisfied,

k k0
then either lk(p) = g for some p between 0 and PR’ whence a critical point
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separates 0 and o in (3.8), or else lk(p) < s for all p between 0 and pR. Then
(3.8) implies that a trajectory of (3.5) connects n, on the left to n - 0 on the
right. In either case, no trajectory of (1.6} lying in 56(“0) can connect uy on the

left to up on the right.

Proof of Proposition 3.4. Part 1) follows from continuity and the fact that
u (0,0 A (ug)) = £ lug), since 4g(0,uy, ) (ug)) = 0. Por part 2), if § is
sufficiently small and n # 0, then r(n,%.s) = 0 4if and only if u(r\,%,u) lies on the

k~th Hugoniot curve for u,, 8O u(n,u

I‘,s) = ;k(p,ub) for some p, and sk(p,ut‘) = 3.

But then p = lk(uL)(;k(p) - u&.) = p(n). We shall establish part 3) in the case that
-k(p(n)) >s for n between 0 and " > 0, and l.kDrk(uo) > 0 (remaining cases are
similar). First, Ak(“n) - lk(O) > s. Then Xk(uL) >8 forany s <8, 8o

?,(0,u;,8) > 0 by (2.5). If s is close to s, then p(% ngeuy o8) < plng.w ,8), 80
r(n,un,;) >0 for n between 0 and % N+ (Since sk(p(n,ul‘,:)) > 8, it cannot
vanish by part 2). Letting $ increase to s we get P(n,ux‘,s) >0 for n between 0

and %no. {(Again, ﬂn'“!.") cannot vanish for n between 0 and " by part 2).)
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§4. ADMISSIBLE VISCOSITIES FOR THE p-SYSTEN
Besides the basic conditions p'(tY) < 0, p"(1) > 0, for the p-systeam in (1.8), in

this section we assume additionally that

-p’(t) + = as T +0

(4.1)
-p'(1) +0 as T+ =

These conditions simplify many of the statements below. Suitable modifications of these
results when (4.1) is not satisfied we leave for the interested reader to verify. With

v - ( 'x."t.)' uw - “a'vn)' the Hugoniot relations from (1.2) imply that

%
p(tL) - p(tR)

(v, ~v ) = s{t, - 1), l-t(_ -
L R L R (t, = )

(4.2)
p(fL) - p(fR) = '(VL - 'R)

The back shocks (1-shocks) are those waves moving with speed s < 0 and satisfying the
entropy inequality
(4.3) -c(tn) >8> -C(TR)
while the front shocks (2~shocks) are those waves moving with speed s > 0 and satisfying
the entropy inequality
(4.4) c(tn) >8> c(tn)

=8p\1/2
Here c(t) = ( dt) is the lLagrangian sound speed. As a consequence of Galilean
invariance, the front and back shocks should describe the same physics under spatial
reflection. Indeed, this is the case and in fact the reader can easily verify that

“x."'x.)' (tn,vn) define a front shock moving with B}
speed 8 > 0 satisfying (4.2) and (4.4) if and only if
(4.5) (;L';L,' (?R,;R) define a back shock moving with
speed <~g < 0 satisfying (4.2) and (4.3) where
(TLovy) = (rgumvp)y (T,V0) = (1 ,=v,)
For the p~system, one right eigenvector matrix is

1

1
(4.6) RO = () =etn)

with corresponding left eigenvector matrix




(4.7) Lo -3

Here we study the (non)existence of viscous profiles for parabolic perturbations of (1.8)
where the diffusion matrix D is given by
4 Y42 dyg * 4 > 0

(4.8) D(t,v) = .

4y 9y 944922 ~ 942934 > 0

and the matrix entries are smoothly varying functions of (1,v). Prom (4.6)-(4.8) we

compute

(4.9) 2(LDR) 1y = (cdy, + € 'ay) + 44y + 4y,
-1
2(LDR)22 - ‘(Cd12 + c d21) + d" + d22

therefore, from 3) of Proposition 2.1, we conclude that D(r1,v) is strictly stable at

(t,v) Lf and only if

(4.10) letna,, + (etm ' +a

P ea,+9a,

21

Admissible and Inadmissible Viscosity Matrices for Weak Shocks

The following result is an immediate corollary of Theorem 3.1 and the remark below that
theorem:

Theorem 4.1. Consider an arbitrary state (to,vo) and assume

1

(a,, + d22) E (C(‘O)d12 + c('ro) dz‘) #0 . Then

11
(1) D 1is admissible for both front and back weak ghocks in a neighborhood of
(to,vo) i{f and only if D is strictly stable at (to,vo).
(2) Assume D is not strictly stable at (1o,v°).
-1
A) If cdyy + ¢ dyy < =(dyq + d22) at (ro,vo) D is inadmissible for all
weak back shocks but D is admissible for all weak front shocks in a
neighborhood of (xo,vo).
-1
B) If <:d‘|2 + e dyy > d4q *t &, at (to,vo), D is admissible for all weak

back shocks but D is inadmissible for all weak front shocks in a

neighborhood of (to,vo).
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We make the foliowing two remarks which are easy consequences of Theorem 4.1.
Remark 1. If D is a constant diffusion matrix, then D i3 admissible for all weak
shocks in a small neighborhood of all points (ro,vo) if and only if D is diagonal,

{.0.,

This fact followa easily from Theorem 4.1 since admissibility occurs when

| ca,, +4a

-1
Ic(ﬂd" + (c(1)) ‘A " 22

22
and we use (4.1) with T ¢+ 0, T 4+ & to justify the above remark.

" Remark 2. There are never any examples of diffusion matrices D for the p-system which
are inadmissible for all (front and back) weak shocks. The announced example in the
introduction of (1] and described at the end of that paper is inadmissible for all front
shocks but admissible for weak back shocks at least (this remark corrects a small error in
(1.

Hopf Bifurcation and Inadmissibility in the Large
The examples of inadmissibility described through Theorem 3.1 are not the only ones

which occur in the large. One of the critical points can also be encircled by a periodic
{or homoclinic) orbit leading to oscillatory behavior and preventing connection of the
critical points. This possibility was pointed out in Theorem 5.3 of (1] through a
nonconstructive argument. Here we link the appearance of such periodic orbits
quantitatively with violation of the strict stability condition. A more subtle and quite
different example of inadmissibility through oscillatory behavior for strictly stable
diffusion matrices is discussed later in this section.

To be specific, we assume that there is a fixed point (to.vo) where D(xo,vo) is
not uniformly stable {see (4.10)) and in fact,
(4.11) dyy + 8y, ¢ apc(Tg) ¢ dz,(c(ro))"

We congider front shocks with (rR,vR) - (to,vo) and the shock speed, s, as a

bifurcation parameter with s > c(to). From (4.2) and (4.4) it is easy to see that glven
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(tR,vR) and 8 > c(tR) there is a unique (YL,VL) defining a front shock. Prom (4.1)
8 varies over (c(tR),-) so that given (4.11), thers is & critical shock wave speed

s > c(to) with

0
) -1
(4.12) c(to) (dn + dzz) = c“o)drz + c(to) d21
We compute that
-1 =g -1 [ [ ] -1
(4.13) tr(D (-c2 _.)) ol (-2 (@ +a ) +ca,+ca,]

Therefore, from (4.12), (4.13) at the critical point (tn.vn) - (to,vo) and for

|s - -ol < §, D"(A = sI) has nonzero complex conjugate eigenvalues, Ai(s), A(s) with

ReA{s) > 0 , 8 - § <8< 8,
(4.14) Re A(s) < 0, s, <8< s, +$
Re A(-o) =0

and alsc Re X'(l)l._'o % 0 g0 by Hopf's bifurcation theorem,
(4.15) (tR,vR) is encircled by a small amplitude periodic

orbit for either 8 - 8 <8¢ B, or s, <s<s+ st
and the corresponding front shock is necessarily inadmissible for this viscosity matrix.
The same phenomenon at (1°,v°) occurs for back shocks provided that the strict stability
condition is violated through

-1
dtzc(fo) + d21c(to) < -(d,, +4,)

22
rather than (4.11).

By looking back at Theorems 2.1 and 2.2, the reader can see that the above argument
for the p-system illustrates in a special case, & very general link between violation of
strict stability and occurence of small amplitude periodic orbits bifurcating from critical

points for (1.6) for general m X m systems and guaranteeing inadaissibility when m = 2;
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however, to keep our discussion brief, we do not develop this here in detail beyond the

above example.

Admissibility in the Large

Here we exhibit a reasonably wide class of strictly stable viscosity matrices which
are admissible for all shocks of the p-system. 1In particular, we prove Corollary 4 of the
introduction.

Theorea 4.2. Suppose conditions (4.1) hold, and suppose D(T,v) is a smooth strictly
stable viscosity matrix for the p-system such that

a) D(t1,v) is constant exterior to a compact region 8 in the half plane 1 > 0.

cav?

b) ror some fixed A, N , *D(1,v) is positive definite in Q.

Then D(T1,v) is admissible for all shocks of the p~system.
Remark. Por any fixed (T1,v), there does exist 1A, |A| < c(T1), such that
[;2 :) pit1,v) is positive definite. To see this, consider the matrix of left

eigenvectors for the p-system defined by

1+a 0 c 1
L = .
s 0 N -a c -

It follows from Proposition 2,2 that for certain a in the interval (-1,1), the matrix

L um,;', hence I.:LGD, is positive definite. But

T t:2 ca
Labg = 2 ( ca 1 ).
Corollary 4 of the introduction follows immediately from the theorem and remark
above. For if D, is strictly stable at a fixed (to,vo), then for some
A, (cz(;) :) D, 18 positive definite at T = T, so also for T in a small
neighborhood Q of (‘ro,vo). Let Y(t,v) be a function such that ¢ = 1 at
(to,vo), ¥ S0 outside I, and let D(T,v) = w, + (1 = ¢JI. Theorem 4.2 applies,

yielding Corollary 4.
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To put our proof of 4.2 in context, recall that an entropy for the system of

conservation laws (1.1) is a function E{u) such that for some Q(u) (the entropy flux) we
have

(4.16) VE*A(u) = VQ(u)

Smooth solutions of (1.1) also satisfy !.'(u)t + Q(u)x = 0. The Hessian of E(u)
symmetrizes (1.1), i.e., VZE-A(u) is symmetric (differentiate above). (Compare
Propositin 2.1(2).) A 2 x 2 system such as the p-system admits many entropies. In fact,
for the p-system (4.16) reduces to the one equation !tr - c2(1')zvv = 0., We consider two
special solutions: E (t,v) = vis2 + p(r),z where P'(t) = p(t), and E(T,v) = tv. We
=E + Xi, and note szx - (; :]. Hypothesis b) of 4.2 simply says that

A 0
vzxxb is positive definite in , and implies that E, itself is convex in Q.

define E

Proof of 4.2, PFix a front shock with u = (rL,vL). u = (IR,vR) and 8 satisfying

(4.4) so that rR > T v > VR* For the system

~s(t - rn) - (v - vR)

(4.17) D(u)ux = v(u)

plT) = plre) - slv ~ vy}
we shall show a trajectory exists connecting u, on the left to up on the right. From
Theorea 2.2, up is a stable node for this system and uy is a saddle point.

We now invoke some results of Conley-Smoller [1] and claim: If no periodic or
homoclinic orbit exists encircling Upe then one branch of the unstable manifold of u
approaches Uup as x > =, The results of [1] which are pertinent are a classification
theorem for flows in the plane with two critical points, one a saddle, one a node (Lemma
4.1), and the existence of an “"isolating disk®” for the system (4.17) with a constant
diffusion matrix (Lemma 5.1), which traps some branch of an invariant manifold of up,
inside it (Lemma 4.2). In the present situation, the isolating disk of Lemma 5.1 may be
constructed to contain § in its interior, since D(u) is constant exterior to Q.

We now introduce two functions
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2
Ao = p(t)(s(t - YR) + v~ vR) - s(v'/2 ¢+ P(7) ~ v(p(tR) - sz)
(4.18)

>?

2
= P(t) - tp(tR) - s(t ~ TR)(V - vR) ~ (v /2 - wR)

and define Ax - Ao + Al. This AA coincides with the functional A which appears in

Mock [12) if the entropy is taken to be !X' It has the property that

2
c (1) A 2
v, = (%, PV = V7K, «v(u)

Along any trajectory of (4.17), then,
2 -1
Ax‘“)x Viu)-V BXD V(u)
80 in any region where Vzlxb is positive definite, AA is increasing along trajectories.
Note that from the first remark of section 4, D(t,v) is diagonal exterior to f. It
follows that Ao increases along trajectories exterior to I, and that Ak increases

along trajectories in the strip 0 < t < T, where c(t1) = |A]l. {This strip contains

1
1.) 'The phase portrait of (4.17) for D d4aiagonal is shown in Pig. t.

Figure 1. Phase portrait of (4.17) for diagonal D
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Ve now consider two cases. First, suppose TR > 11- Then it is clear that no

periodic or homoclinic orbit encircling up can exist, for it would have to intersect the

vertical line T = T, in two places, but Pig. 1 shows that is impossible for a trajectory

R
in the region 1t > tR.
In the second case, Y < T, mo periodic or homoclinic orbit encircling up could
lie entirely to the left of the line Tt = Tye for AA increases on trajectories there.

The remaining possibility is that part of the encircling orbit lag to the right of the line
T T It can only do so if that part is one connected piece as indicated in Fig. 1.

Let u_= (11,v_) be the point of entry, u = (11,v+) the point of exit. Then

Ab(“+) - Ab(“-) >0 > Ax(u*) - Ax(u_)
if the encircling orbit exists. Since ) = c(t,), this implies

c(T1)lA(u+) - Mu )| > Ay(u,) = Agtu))
We will show this cannot hold, so the encircling orbit cannot exist. Now

Mu,) = Ku ) = (v, = v ) v, = (v, + v )/2)
where vy Vg = -a(t1 - 1R). with vyt Ve = (p(11) - p(TR))/l, observe that
v_< v1 < v, < vz. Also
Ao(u+) - Ao(u) = s(v, - v'_)(v2 - v, + v )/2) .

Then v2 - (v+ +v.)/2> Iv1 - (v+ + v_)/2| and 8 > c(tR) > c(11), so the inequalities
above cannot hold, concluding the proof of Theorem 4.2 for front shocks. PFor back shocks,
replace v by =-v, x by =-x in (4.17), reducing the connection problem to that for a
front shock.

An Example: Strictly Stable, but Inadmissible in the Large

We give here a construction which shows that, despite the positive results above, the
local condition of strict stability is not quite sufficient for global admissibility.
Proposition 4.3. Pix a front shock (IL,VL), (rR,vR) with c(tb) >8> c(tR) > 0 There
eixsts a smooth choice of D(7,v), strictly stable at each point, such that the system of
ODE's (4.17) for the p~system admits a closed periodic orbit encircling (rR,vn), .
axcluding (tL,vL), 80 no trajectory can connact the two. We may choose D = I outside

an annular region containing the periodic orbit.
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Proof. we will make use of the strictly stable matrix function 5(0,-.;) of Proposition

2.2. Observe that D(u,w,w) = I (see appendix B). Of course, u = (1,v). Our procedure

is as followa:

N n e e A—paC—— e g+ < .

a) Ve will exhibit a vector field V,(u) in an annular region encircling (t‘,vl)

excluding “x.’v!.) which admits periodic orbits, and is also such that the pair LV(u),

LVy(u) satisfy condition (Q) of Proposition 2.2 at each point.

b) Then V and V4 can be patched together by a partition of unity: Take a
function ¥(u) which is 1 on a periodic orbit and 0 outaide the annular region, and
let V = W, + (1= WV,

€) By the remark concluding section 2, LV and v satisfy condition (Q)
everywhere. Simply take D-‘(u) - S(u,LV(u),m'l-(u)).

It remains to perform step a). Bacause u = “R'VR) is a stable node for the vactor
field V(u), the map u + w given by

w = =LV(u)

is locally invertible at w = 0 by the inverse function theorem. In the w-plane we
consider the family of curves wi( On:o) in polar coordinates,
- P - p,-/p
r(O.ro) = (|lcos § Ool + |sin o Bol ) 5,

for r, small, p and 00 fixed, 1 < p< 2, 0 < 60 < ¥/4 (gee Pig. 2)

Figure 2
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This curve {s the boundary of a ball in the p-metric Iwl = (|w1|P + (-2|P)1/p rotated
through an angle 90. It has the property that for each @, the pair of vectors
-w(8), w(0) satisfy condition (Q). For ro sufficiently small, we may then obtain

closed curves \l(G;ro) encircling up via the isomorphism u <—> w defined above. Then

0

o - 231V . - ([8 * c(T)
w(8) u u(®) ([ 0 8 - c(1)

] + 0txy) )Licose )
There is a smooth choice of positive diagonal S(0) (see appendix B) so that

—wTou(8) » cr?

0 for all 6, C > 0 constant.

With § = 8+diag(s + c,8 ~¢c}), c = c(t(Olro)) we have
LV(u(0))SLG(8) > cry - O(rg) > 0 if r, 1is small.

Therefore it suffices to take V = ﬁ(eiro) in gtep a).

1
The Admissibility Criteria of Conley-Smoller and Strict Stability

Here we remark that under very general circumstances, application of the admissibility
criteria of Conley-Smoller from (1] to one front ghock and one back shock associated with a
given value of T automatically forces the diffusion matrix to satisfy a stronger
requirement than strict stability. FPor simplicity in exposition we only state these
results below for the paired front and back shocks described in (4.5), related through
reflectional symmetry, and leave the obvious generalizations to the interested reader. We
have
Proposition 4.4. Assume the admissibility criterion of Theorem 3.2 of [1] applies to both
the front shock and back shock described in (4.5) for a fixed shock speed s > 0. Also
assume the diffusion matrix D satisfies D“R'vn) = D(tR,-vR) - in particular any
constant D always satisfies this requirement. Then D is strictly stable at (rR,zvR)
and satisfies

el1))
| ¢« —&

(a +d,.)<a4 _+a

-1
letrgld,, + clry) 4 11 Y9 1t %

21

To apply Theorem 3.2 of (1] to a given front shock connecting (tx‘,vn) to (TR,VR)
with speed s > 0 requires at “R'VR)' .

dyz8 < dy,
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8
26 <d

21 11
c
80 that
a c+a, e cSqa, +a.
12¢ * 92° s T %2
Similarly, connecting (tn,-vn) to (tL,-vL) with wave speed -s requires by the same

conditions that at (tn.-v )

R
-l ]
duc + dz1c > . (d" +

Since the entropy condition guarantees o fn) < 8, the conclusion of Proposition 4.4

452!

follows.

We also have
Proposition 4.5. Assume the admissibility criterion of Theorem 5.2 of [V} applies to both
the front shock and back shock described in (4.5) for a fixed shock speed 8 > 0. Also
assume the diffusion matrix D satisfies D(tL.vL) - D(rL,-vL). Then D is strictly
stable at (rL.tvL) and satisfies

letr ),y + clrp ™, 0 < a—:;-)- 4y, + a,,)

Pirst, we apply the admissibility criterion of Theorem 5.2 from [1] for the shock
moving with speed s > 0; this requires that the trace of the matrix in (4.13) is negative
at (tL,vL) so that

-q Y
Cdyy * € 9y, < (i) 94 * 93

8imilarly, applying this criterion to the shock from (4.5) with speed -~ 3 requires that

the trace of the matrix in (4.13) is negative at (‘I’L,"VL) so that

cd + c.1

12 +dy))

-8
921 > Tty Qi t 9y
L
and these two inequalities together with the entropy condition c(rt‘) > 8 imply the

conclusion of Proposition 4.5.

An Inadmissidble Matrix on the Boundary of the Strictly Stable Viscosities

We consider the explicit choice of the matrix D given by

0 1
D(t) =

<2 o
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This matrix is associated with purely dispersive wave propagation for {(1.5) since LDR( 1)

is a skew symmetric satrix. Furthermore, D is on the boundary of the set of stable

viscosity matrices since D{r) is the limit as € + 0 of

€ 1
p(1) =

-cz(t) €
and DS(T) is strictly stable because (4.10) is satisfied.
rixing any shock (tn,vn),(tn,vn),-, it is easy to check that the function Ao(t,v)

of (4.18) is constant along trajectories of (4.17)« Since Ao(tn,vn) * Ab(tn.vnl, no

connection is possible.




Appendix A. Proof of Theorem 2.1.
We begin by developing some necessary criteria for a viscosity matrix D to be
stable, i.e. for D € S(uy). From (2.1) it follows that

(A.1) max lon(g’l < C

octc=
R
for some fixed constant ¢, where P(§) = -€2D - {EA, This estimate can hold only if the
eigenvalues of P(E) have nonpositive real part for all real £. Using this principle, we
can establish:
Proposition (A.1). Assume D is stable at u, (D € S{ug)). Then
(1) The eigenvalues of D have nonnegative real part.
(2) tkDrk(uo) 20 for k= 1,...,m.
(3) For any eigenvalue «x_,(§) of P(§),

3
Re K,(E) €0, j=1,...,m.
Proof. Prom the discussion above, (3) is immediate. Define, for convenience,
B(G) = D sin O + iA cos 6 .

Eigenvalues ujlﬂ) of B(9) are related to eigenvalues «x,(E) of P(E) by

3
uj(e)'(tan 6/coa 9) = -&j(nn ) for 6 *0, -%x/2<60< w2,
rrom (3), and using continuity,
{A.2) (sgn 0)Re uj(e) »0, ~®/2<B8<%/2, = 1,,00,m
Setting 6 = x/2 we obtain (1). Por (2), observe B(0) = iA has distinct imaginary
eigenvalues. Therefore, for small 0 there exist smooth eigenvalues %(6) and
eigenvectors Rk(e), with uk(O) = lxk(uo), Ry (0) = re(uy), satisfying
(B(8) - ;ﬁt(ennk(e) =0
Differentiate and set 6 = 0 (B'(0) = D). Then dot with lk(uo). We obtain
(A.3) 4,07, (u,) = u;t(e)
Part (2) now follows using (A.2).

Proof of Theorem 2.1. We shall argue that (1) implies (2) implies (3) implies (1). Assume

that D is in the interior of 8(ug}. Then for some 60 >0, D~ 601 is stable, i.e.,

~

in 8l(uy). The eigenvalues Kj(E) of P(E) = -Ez(D - 601) = {EA then satisfy
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(6) + 862 <o

Re 23(5) - Re
establishing (2).
It is not hard to show that if some part of condition (3) does not hold, then (2)
t cannot hold, by using scaling arguments as in the proof of Proposition A.1. Since the
conditions in (3) are open conditions, to complete the proof it remains only to show that
if conditions 31) - 3ii1) are satisfied, then D is stable, i.e. in Slug). Ve will make
use of one part of the Kreiss matrix theorem.
Theorem (Kreiss, 1959 [9]). Let a family of m x m square matrices be given. A necessary
and sufficient condition that C, > 0 exist so that
tA

e I<C!1

for all t > 0 and all A in the family, is
(X3} There exist constants Cq4 and Cj, and a matrix S(A) for each A in the

family, with max(1Sf,I1s 1) < C,,, so that

31
Uy b12 cesonse b1‘
sns" . 0 u2 esesenue b2n
O ceverirn 0

is upper triangular, with

(A.4) Rau1<...<neum<0
and

(A.5) lbijl < cazlke ujl for i < j§

Assume D satiafies conditions 3i) - 3iii). Ve shall verify the cordition (K3) for
the family of matrices (P(f)|£ @€ R}, or what is the same, because of a positive gcaling
factor, for the bounded family {-sin & B(8)|-®x/2 < 8 < n/2}.

We begin by using condition ii), comstructing a suitable S for 6 near 0. From
the proof of A.1, the matrix B(6) may be diagonalized by a matrix R(6) of right
eigenvectors for (9] small (so 8-1 = R(6), and blj = D) and its distinct eigenvalues

uk(O) satisfy “§‘°’ - lkDrk(uo) >0, so for |06] < 00, we have =-sin euk(e) < 0.
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ror Oo < |0) € ®/2, we may choose a unitary matrix 8(8) which puts -sin 9 B(9)

into upper triangular form satisfying (A.4), by Schur's theorem (or see Richtamyer and

Morton (14], p. 77). The eigenvalues 'ﬂj(e) of ~ain 6 B(8) are continuous and never

touch the imaginary axis for 60 < {8] € ¥/2 by conditions i) and iii). Therefore

e ety

|Re ‘ﬁj 0)| » v, > 0 for Oo < |9} € ¥/2. But the off-diagonal elements of

8(-sin @ 5)3.1(0) are uniformly bounded, since S s u.aitary and B(9) bounded. So

{K3) holds, and Theorem 2.1 is established.

S e

.
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Appendix B: Proof of Proposition 2.3.

Consider the converse part first. If D is strictly stable, there erists a positive

diagonal S such that §-1LDR§ is positive definite, by 2.2. Then if w is nonzero,

1 2

0« (§-1V)T§- LDR§(§—1H) = ng- LDRw ,

so w and LDRw satisfy condition (Q).

Now agsume w and w, nonzero, satisfy (Q). Then there exists a rotation matrix

0(8) = (cOl ® -gin 3),

sin 0 cos 8 with |6] < ®/2, and a constant ¢ > 0, such that

w = c0(8)Sw. With LDR = c0(9)s, D is strictly stable, by 2.1(3), since cos 8 > 0. 1In

order to show that D may be chogen smoothly, it suffices to show that S, depending on
w,;, may be chosen smoothly.

Let S(t) = diag(t,2 ~ t). We shall show that t may be chosen as a smooth function

of the angles 0 = arg w, § = arg w in the proper subdomain of the torus s1 x s1. In

Pigure 3 below, the torus is divided into 16 square patches
(x %, (x + 1) %) x (; 1, (k + 1) %) indicating regions in which w and v lie in given

quadrants. The domain is the open, connected set indicated by shading.

o = —F——
— ==
== 72
2 "_‘,——‘
,a”'—",——”—",——”’—‘
- —
=
I L
/ .
C—

1
2
|
RO E
(o]
1
INTE ]

Pigure 3. Domain of t(e,S) in 8 x8
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+ ot et et $AERATIA, 1o, W <

Define c(e,B) as follows: 1If (9,3) lies in a square on the main diagonal (so

k= i, i.e., w and ; lie in the same quadrant), define z(e,ﬁ) =1, 80 S(t) = I.
Consider a particular patch Q off the main diagonal, Q = (0, %) x (3, ¥). Let w,w be
given, with (9,5) € Q. In order that condition (Q) above be satisfied with § = S(t},

~ Mr - ~ - "~ -
we must have t(9,08) < tc where w s(tc)w 0, i.e., w1w1tc + (2 tc)vzwz 0 or

~ - ~ 27
E—:_EZ = ~tan 9 tan 8 = T(6,9). Thus tc i 7

Simply take £(9,8) = ¢(T) as any ¢” function of T on the interval (0,») such that

t(T) < t, and t(T) = 1 for T sufficiently large. Other patches off the main diagonal

are treated similarly, so a smooth t(B,s) may be defined as required. This concludes the

proof of Proposition 2.3.
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